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Abstract. Parameterised Boolean Equation Systems (PBESs) can be
used to represent many different kinds of decision problems. Most notably,
model checking and equivalence problems can be encoded in a PBES. Tra-
ditional instantiation techniques cannot deal with PBESs with an infinite
data domain. We propose an approach that can solve PBESs with infinite
data by computing the bisimulation quotient of the underlying graph
structure. Furthermore, we show how this technique can be improved
by repeatedly searching for finite proofs. Unlike existing approaches, our
technique is not restricted to subfragments of PBESs. Experimental re-
sults show that our ideas work well in practice and support a wider range
of models and properties than state-of-the-art techniques.

1 Introduction

A parameterised Boolean equation system (PBES) [12] is a sequence of fixpoint
equations over first-order logic formulae. Many different types of decision problems
can be encoded in a PBES, for example model checking problems, as implemented
by the toolsets CADP [11] and mCRL2 [6], and equivalence queries [4]. Model
checking problems using the modal mu-calculus with data and time as well as
CTL*/LTL formulas can be translated efficiently into PBESs. The answer to
the encoded problem can be found by (partially) solving the PBES. In this way,
PBESs and techniques to solve them are useful in the analysis of component
systems.

Although finding the solution of a PBES is undecidable in general, in practice
several efficient approaches to solve PBESs exist. Most notably, some PBESs
can be solved efficiently by first simplifying it—if needed—using static analy-
sis techniques, instantiating it to a finite Boolean equation system (BES) and
subsequently solving this BES. However, for many types of problems, the corre-
sponding PBES contains data taken from domains that are infinite. For example,
a PBES encoding the mutual exclusion property for Lamport’s bakery protocol
requires data variables ranging over natural numbers. Similarly, PBESs encoding
model checking problems for timed or hybrid systems, typically modelled by
timed automata or hybrid automata, contain data variables that range over real
numbers.

Several symbolic techniques have been proposed to deal with PBESs over
infinite data domains [21,18,10], but their application is unfortunately limited



to specific subclasses of PBESs. Typically, these fragments exclude PBESs in
which both logical quantifiers occur; i.e. PBESs may only contain universal
quantification or only existential quantification. Such constraints effectively limit
the class of properties that can be encoded, excluding, e.g. most behavioural
equivalence decision problems, but also many CTL* properties. In this paper, we
present a more general approach that is applicable to the full class of PBESs,
without such limitations. Our contributions are as follows:

– We introduce a new normal form for PBESs which we call clustered recursive
form (CRF). This normal form facilitates reasoning about the dependencies
between predicate variables in a PBES and enables capturing these in a
dependency graph.

– We provide an algorithm that computes, using quotienting, a minimal reduced
dependency graph from a symbolic representation of the dependency graph
of a PBES. Upon termination of the algorithm, the computed artefact can
then be used to solve the PBES. The correctness is given by Theorem 3.

– On top of this, we provide an algorithm that extracts finite partial solutions
from PBESs that have an infinite minimal reduced dependency graph. The
correctness of this approach is given by Theorem 4.

To validate the above, we perform a number of experiments with an imple-
mentation of our two algorithms and compare these to the approach of [18]. The
results of this evaluation show that our technique is indeed capable of solving
decision problems that existing approaches fail to solve so far. In particular, the
experiments show that our technique is a promising generic approach for model
checking of (timed) modal mu-calculus properties on systems with infinite data
domains and also equivalence checking of systems with infinite data domains.

The rest of the paper is structured as follows: Section 2 introduces the basic
theoretical concepts. Section 3 contains an example that shows how PBESs can
be applied and what the shortcomings of current solving techniques are. Then,
Sections 4 and 5 show how a minimal representation of the semantics of a PBES
can be computed. An improved algorithm is presented in Section 6, and the
performance of an experimental implementation is evaluated in Section 7. Finally,
Section 8 gives an overview of related work and Section 9 presents a conclusion
and suggestions for future work. For detailed proofs of our lemmas and theorems
we refer to a technical report [23].

2 Preliminaries

In this paper, we work with abstract data types and denote their non-empty
data sorts with the letters D,E, . . . and their corresponding semantic domains
by D,E, . . . In addition, we use B to denote the Booleans and N to denote the
natural numbers {0, 1, 2, . . . }, which have the semantic counterparts B and N
respectively. We also have a singleton sort D? = {?} on which no operations
are defined. Furthermore, we have a set of data variables V. Expressions not
containing variables are called ground terms. For expressions that do contain
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variables, we have a data environment δ that maps each variable in V to an
element of the corresponding sort. The semantics of an expression f in the
context of a data environment δ is denoted JfKδ. The set of all data environments
is ∆. Updates to an environment δ are denoted by δ[v/d], which is defined as
δ[v/d](d) = v and δ[v/d](d′) = δ(d′) for all variables d, d′ satisfying d′ 6= d.

A parameterised Boolean equation system is a sequence of fixpoint equations
over predicate formulae. We confine ourselves to giving a cursory overview of
the syntax and semantics of the relevant theory and refer the interested reader
to [12] for a more in-depth treatment and additional examples.

Definition 1. A predicate formula is defined by the following grammar:

φ ::= b | φ ∨ φ | φ ∧ φ | φ⇒ φ | ∃e:E. φ | ∀e:E. φ | X(f)

where b is a data term of sort B, e is a variable of sort E, X is a predicate variable
of sort D → B, which is taken from some set X of sorted predicate variables
and argument f is an expression of sort D. The interpretation of a predicate
formula φ in the context of a predicate environment η : X → 2D, providing
an interpretation for predicate variables from X , and a data environment δ is
denoted by JφKηδ and inductively defined as follows:

JbKηδ = JbKδ JX(f)Kηδ =

{
true if JfKδ ∈ η(X)
false otherwise

Jϕ ∧ ψKηδ ⇔ JϕKηδ and JψKηδ hold Jϕ ∨ ψKηδ ⇔ JϕKηδ or JψKηδ hold

Jϕ⇒ ψKηδ ⇔ JϕKηδ holds implies that JψKηδ holds

J∀d : E. ϕKηδ ⇔ for all v ∈ E, JϕKηδ[v/d] holds

J∃d : E. ϕKηδ ⇔ for some v ∈ E, JϕKηδ[v/d] holds

A predicate formula is syntactically monotone iff all its subformulae of the form
ϕ⇒ ψ are such that ϕ contains no predicate variables. Without loss of generality,
in the theory we develop in this paper we only consider parameterised Boolean
equation systems where each equation carries the same single parameter of a
given data sort D. In our examples, we use (multi-parameter) equations ranging
over the Booleans (B) and the natural numbers (N).

Definition 2. A parameterised Boolean equation system (PBES) is a sequence
of equations as defined by the following grammar:

E ::= ∅ | (νX(d:D) = ϕ)E | (µX(d:D) = ϕ)E

where ∅ is the empty PBES, µ and ν denote the least and greatest fixpoint operator,
respectively, and X ∈ X is a predicate variable of sort D → B. The right-hand
side ϕ is a syntactically monotone predicate formula. Lastly, d ∈ V is a parameter
of sort D.

We use bnd(E) to denote the predicate variables bound by E , i.e., those
variables occurring at the left-hand side of an equation. For an equation for X,
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dX denotes its parameter and ϕX denotes its right-hand side predicate formula.
We omit the trailing ∅. We say a PBES is closed when it does not contain free
variables, i.e., all data variables that occur in a right-hand side ϕX are either
bound by a quantifier or as a data parameter of X, whereas all predicate variables
belong to bnd(E). A PBES E is called a Boolean equation system (BES) iff all
predicate variables bound by E have type D? → B and every right-hand side
only contains the operators ∧ and ∨, constants true and false and X(?). We
say that a PBES E is well-formed iff for every X ∈ bnd(E) there is exactly one
equation in E . In the remainder of the paper we only reason about well-formed,
closed PBESs.

Definition 3. The solution JEKηδ of a PBES E in the context of a predicate
environment η and a data environment δ, is a predicate environment that is
defined inductively:

J ∅ Kηδ = η

J(µX(d:D) = ϕX)EKηδ = JEKη[µTX/X]δ

J(νX(d:D) = ϕX)EKηδ = JEKη[νTX/X]δ

with TX(R) = {v ∈ D | JϕXK(JEKη[R/X]δ)δ[v/d]}.

Intuitively, the solution of a PBES gives priority to fixpoints that occur early
in the PBES, while satisfying the equalities that are specified by each equation.
The monotonicity of the transformer TX : 2D → 2D, which follows from syntactic
monotonicity of ϕX , guarantees the existence of the least fixpoint µTX and
greatest fixpoint νTX in the complete lattice (2D,⊆). Also, note that the solution
of a bound variable in a closed PBES does not depend on the environments η
and δ. For this reason, we often omit η and δ and simply write JEK instead of
JEKηδ. Finally, for a PBES E and some X ∈ bnd(E) we sometimes say that [the
solution to] X(v) is true iff v ∈ JEK(X).

Example 1. Consider the following PBES consisting of an equation for X and
an equation for Y , both carrying a single parameter. Furthermore, the equation
for X has a least fixpoint, and the equation for Y has a greatest fixpoint.

µX(n:N) = (∃m:N.m ≥ n ∧X(m)) ∧ Y (false)

νY (b:B) = Y (¬b)

The solution η for this PBES satisfies η(X) = ∅ and η(Y ) = B. ut

The theory of this paper is built on the notion of dependency graphs and
proof graphs explored in [8]. Intuitively, a proof graph is a witness providing an
operational explanation for a (partial) solution of a PBES. Before we introduce
these graphs formally, we need some additional concepts.

First, sig(E) is the signature of E , defined as sig(E) = {(X, v) | X ∈ bnd(E), v ∈
D}. For a given set S ⊆ sig(E), the predicate environment env(S, true) that follows
from it is defined as env(S, true)(X) = {v ∈ D | (X, v) ∈ S}. Dually, we define
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(X, 0) (X, 5)

(Y, false) (Y, true)

(a) A positive dependency graph

(X, 0) (X, 1) (X, 2) ...

(Y, false) (Y, true)

(b) A negative dependency graph

Fig. 1: Dependency graphs for the PBES from Example 1.

env(S, false)(X) = D \ env(S, true)(X). Furthermore, every predicate variable
bound in E = (σ1X1(d:D) = ϕ1) . . . (σnXn(d:D) = ϕn) is assigned a rank, where
rankE(Xi) is the number of alternations in the sequence of fixpoint symbols
νσ1σ2 . . . σi. Observe that rankE(Xi) is even iff σi = ν.

Definition 4. Let E be a PBES and G = (V,E) be a directed graph, where
V ⊆ sig(E). We say G is a dependency graph for r ∈ B iff for every (X, v) ∈ V
and for all δ, JϕXKη(δ[v/dX ]) = r with η = env((X, v)•, r), where s• denotes the
successor set of a node, defined as s• = {t | sE t}.

Intuitively, in a positive dependency graph (where r is true), η = env((X, v)•, r)
is a predicate environment that maps all successors of (X, v) to true and all other
nodes to false. Then, the requirement is that ϕX (and thus X(v)) is true under
η and a data environment that maps dX to v. In other words, the successors of a
node (X, v) being true must imply that (X, v) is true as well. Dually, a negative
dependency graph (where r is false) indicates a node (X, v) is false, because its
successors are all false.

Example 2. Recall the PBES from Example 1. Figure 1 depicts a positive and a
negative dependency graph for this PBES. We focus on node (X, 0) in the positive
dependency graph of Figure 1(a). Its successors are (X, 5) and (Y, false). The
environment η induced by these successors is given by env((X, 0)•, true), which
sets these successors to true; i.e. η is such that η(X) = {5} and η(Y ) = {false}.
When we evaluate the right-hand side of the equation for X in the context of η and
parameter n set to 0, we obtain J(∃m:N.m ≥ n ∧X(m)) ∧ Y (false)Kη(δ[0/n]) =
true. Therefore, the positive dependency graph condition is satisfied for node
(X, 0).

Note that nodes (Y, false) and (Y, true) are dependent on each other in
both dependency graphs. Furthermore, in the negative case, (X, 0) needs no
dependency on (Y, false) as long as it depends on all (X, i) with i ∈ N. ut

A dependency graph captures the logical structure of a PBES; it does not
include the fixpoint semantics. If we want to reason about the actual solution of
a PBES, we need an additional restriction on the infinite paths in a dependency
graph. Dependency graphs that meet these restrictions are called proof graphs.

Definition 5. Let G = (V,E) be a positive (respectively negative) dependency
graph for a PBES E. Then G is a positive proof graph (respectively negative proof
graph) iff for all infinite paths π in G, the number min{rankE(X) | X ∈ V∞(π)}
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(Y, false) (Y, true)

(a) A positive proof graph

(X, 0) (X, 1) (X, 2) ...

(b) A negative proof graph

Fig. 2: Proof graphs for the PBES from Example 1.

is even (respectively odd), where V∞(π) is the set of predicate variables that occur
infinitely often along π.

Observe that predicate variables with a lower rank dominate those with a
higher rank. This reflects the fact that fixpoint symbols that occur early in an
equation system take priority over later ones (cf. Definition 3).

Example 3. Recall again the PBES from Example 1. In this PBES, the rank of X
is 1, and the rank of Y is 2. Figure 2 depicts a positive and a negative proof graph
for this PBES. Note that Figure 2(a) depicts the smallest positive proof graph
proving that Y (false) is true. Larger proof graphs can be obtained by adding a
self loop to (Y, false) or (Y, true). Similarly, the proof graph in Figure 2(b) is the
smallest negative proof graph explaining that X(0) is false. However, there is a
smaller negative proof graph showing that X(1) = false, viz. the graph that does
not include (X, 0). ut

The next theorem formally states the relationship between proof graphs and
the solution of a PBES.

Theorem 1 ([8]). Let E be a PBES with X ∈ bnd(E). Then v ∈ JEK(X) iff
there is a positive proof graph (V,E) such that (X, v) ∈ V . Dually, v /∈ JEK(X)
iff there is a negative proof graph containing (X, v).

In [8], proof graphs were introduced mainly to formalise the concept of wit-
nesses and counterexamples. Instead, we rely on the above theorem to (partially)
solve PBESs by searching for concise representations of proof graphs. Before we
explain this idea in detail, we illustrate how to apply PBESs in model checking
with an example.

3 Motivating Example

To show how PBESs can be used for model checking and to motivate our approach,
we introduce a slightly larger example in this section. The model we consider
is a simplified version of Lamport’s bakery protocol [19]. In our setting, there
are only two processes (customer 0 and customer 1) and all writes and reads
are atomic. When customer i enters the bakery, he/she does not have a number
(n = 0). At any point, the customer can pick a number, which is one larger than
the number of the other customer. If both customers are waiting, the customer
with the smallest number can enter the critical section. When leaving the critical
section, the number is discarded (n is reset to 0). See Figure 3.
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idle

waitingcs

pick i

ni := n1−i + 1

n1−i = 0 ∨ ni < n1−i

enter i

leavei

ni := 0

Fig. 3: Process i from the simplified
bakery protocol.

(X, (idle, 0, idle, 0))

(X, (waiting, 1, idle, 0))

(X, (waiting, 1,waiting, 2))

(X, (cs, 1,waiting, 2))

(X, (idle, 0,waiting, 2))

(X, (waiting, 3,waiting, 2))

...

(Y, (1, idle, 0))

(Y, (3,waiting, 2))

Fig. 4: Part of the infinite proof graph
of the bakery example.

On this model, we would like to check the property “whenever customer
0 picks a number, it will unavoidably enter the critical section within a finite
amount of time”. This can be formalised with the modal mu-calculus formula
νX.([true]X ∧ [pick0]µY.([ enter0 ]Y ∧ 〈true〉true)). From the model and the
formula, the following PBES can be constructed automatically:

νX(s0:S, n0:N, s1:S, n1:N) = (1)

s0 = idle ⇒ Y (n1 + 1, s1, n1)∧ (2)

s0 = idle ⇒ X(waiting , n1 + 1, s1, n1)∧ (3)

s0 = waiting ∧ (n1 = 0 ∨ n0 < n1)⇒ X(cs, n0, s1, n1)∧ (4)

s0 = cs ⇒ X(idle, 0, s1, n1)∧ (5)

s1 = idle ⇒ X(s0, n0,waiting , n0 + 1)∧ (6)

s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)⇒ X(s0, n0, cs, n1)∧ (7)

s1 = cs ⇒ X(s0, n0, idle, 0) (8)

µY (n0:N, s1:S, n1:N) = (9)

((n1 = 0 ∨ n0 < n1)∨ (10)

s1 = idle ∨ (s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)) ∨ s1 = cs)∧ (11)

s1 = idle ⇒ Y (n0,waiting , n0 + 1)∧ (12)

s1 = waiting ∧ (n1 = 0 ∨ n1 < n0)⇒ Y (n0, cs, n1)∧ (13)

s1 = cs ⇒ Y (n0, idle, 0) (14)

In this encoding, si and ni represent the state and number of customer i, re-
spectively. Furthermore, the states of a single process are encoded in the sort S.
Predicate variable X represents the fact that the property has to hold at any
point in time. Therefore, it encodes the full behaviour of the system (lines 3 to 8)
and is labelled with a greatest fixpoint. When customer 0 picks a number, we
check the second half of the property using Y (line 2). For predicate variable Y ,
we assume that customer 0 is in the state waiting . Then, Y is true if customer 0
can enter the critical section (line 10) or customer 1 does something else after
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which Y holds (line 11 and lines 12 to 14). However, customer 1 is only allowed
to do something finitely often, so the equation for Y is labelled with a least
fixpoint. The property holds, since the solution for the initial state is true, i.e.,
(X, (idle, 0, idle, 0)) ∈ JEK(X).

There are a few interesting observations that we can make based on this
PBES. Firstly, it is not possible to solve it with traditional instantiation-based
techniques, since the dependency graph is infinite. Moreover, there is no finite
proof graph that contains (X, (idle, 0, idle, 0)), so even the application of smart
heuristics to guide the instantiation does not improve the situation. See Figure 4
for a part of the infinite proof graph. Secondly, the actual value of n0 and n1 is
not essential to the problem. What matters is which of the two is larger. This
inspired us to investigate symbolic techniques for solving PBESs.

4 Standard and Clustered Recursive Form

To reason symbolically about the underlying dependency graph of a PBES E ,
we need to rely on the information contained in E . However, for PBESs with an
arbitrary structure, that is not trivial [15]. Therefore, we introduce a normal form
that simplifies the reasoning about transitions in the underlying proof graph.

A common normal form for Boolean equation systems is standard recursive
form (SRF) [16]. This normal form is commonly used to translate a BES into
a parity game, for which efficient solving techniques exist. We generalise the
definition to PBESs.

Definition 6. Let E be a PBES. Then E is in standard recursive form (SRF)
iff for all (σiXi(d:D) = φ) ∈ E, φ is either disjunctive or conjunctive, i.e., the
equation for Xi has the shape

σiXi(d:D) =
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧Xj(gj(d, ej))

or
σiXi(d:D) =

∧
j∈Ji

∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej))

Furthermore, we add the semantic restriction that for every (X, v) ∈ sig(E), at
least one condition fj should evaluate to true, i.e., there is a j ∈ J , a data
environment δ and a vj ∈ Ej such that Jfj(d, ej)Kδ[vj/ej , v/d] holds.

Standard recursive form is similar to the parameterised parity game form
of [14]. We call each of the disjuncts or conjuncts of a right-hand side a clause.
For a PBES E in SRF, we define a function opE : bnd(E)→ {∧,∨} that indicates
for each predicate variable whether its equation is conjunctive or disjunctive. The
next proposition states that SRF is a proper normal form, i.e., every PBES can
be transformed into SRF while preserving the solution of bound variables.

Proposition 1. For every PBES E, there is an E ′ in SRF such that JEK(X) =
JE ′K(X) for every X ∈ bnd(E).
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Proof. For each equation in E that is not yet of the required form, we can stepwise
transform it into one that is. This is done by eliminating nested conjunctions,
disjunctions and quantifiers by introducing new predicate variables and extra
equations for these variables, see [12]. For instance, an equation that is of
the form (σX(d:D) = ∀e:E. φ) can be replaced by two equations (σX(d:D) =
∀e:E. Y (d, e)) (σY (d:D, e:E) = φ) for some fresh variable Y . Note that this
results in at most a linear blow-up of the size of E .

The semantic restriction that at least one clause should be satisfiable can be
met by adding the equations (νXtrue(d:D?) = Xtrue(?)) and (µXfalse(d:D?) =
Xfalse(?)) to E , and adding a clause Xtrue(?) to every conjunctive right-hand
side and a clause Xfalse(?) to every disjunctive right-hand side. ut

We say a formula is in clustered recursive form (CRF) iff the predicate variable
in each of the clauses is unique, i.e., Xj 6= Xk for all distinct j, k ∈ J . A PBES
is in CRF iff all its right-hand sides are CRF formulae. We observe that every
PBES can be transformed to CRF by applying Proposition 1 and subsequently
combining clauses that have the same predicate variable, relying on suitable
pairing and projection operators for the data arguments.

Henceforward we only consider PBESs in CRF. The structure offered by CRF
enables us to reason about the edges that exist in proof graphs. Intuitively, an
outgoing edge from a node (Xi, v) must be based on some clause j ∈ Ji whose
guard fj(v, ej) is true for some ej of sort Ej . The target node of that edge is
associated to predicate variable instance Xj(gj(v, ej)). The following definition
formalises this.

Definition 7. Let E be a PBES in CRF, where each equation has the same
structure as in Definition 6. Then, the dependency space of E is a graph G =
(sig(E), E), where E is the set satisfying (Xi, v)E(Xj , w) for given Xi, Xj for
j ∈ Ji, v and w iff for some δ and vj∈Ej, both w = Jgj(d, ej)Kδ[vj/ej , v/d] and
Jfj(d, ej)Kδ[vj/ej , v/d] hold.

Definition 7 generalises the definition of a dependency space from [18]. Note
that every node in a dependency space has an outgoing edge, since CRF imposes
this semantic requirement. This is necessary for the validity of the next lemma.

Lemma 1. The dependency space G = (sig(E), E) of E is both a positive and a
negative dependency graph.

Proof. Let (Xi, v) be a node of G. There are four cases that we must consider.
Case 1: suppose the equation for Xi is conjunctive and we want to prove that
G is a positive dependency graph, i.e., r (from Definition 4) is true. From the
definition of env(S, true) and Definition 7 we know the following:

env((Xi, v)•, true)(Xj)
= {Jgj(d, ej)Kδ[vj/ej , v/d] | δ ∈ ∆, vj∈Ej . Jfj(d, ej)Kδ[vj/ej , v/d]} (†)

Using the definition of the semantics and (†), we can deduce that JϕXi
Kηδ[v/d] = r,

where η = env((Xi, v)•, true). With this, the condition on transitions in a positive
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dependency graph is satisfied. The proofs for the other three combinations are
analogous. ut

Theorem 2. The dependency space of a PBES E is the unique smallest depen-
dency graph with V = sig(E) that is both positive and negative.

Proof. By contradiction. Let G = (sig(E), E) be the dependency space for some
PBES E and let G′ = (sig(E), E′) be a dependency graph that is both positive
and negative such that E * E′, i.e., G is not strictly smaller than G′. That means
that there is at least one edge in E that is missing from E′. Let (X, v)E(Y,w)
be such an edge. From the definition of a dependency space, we can deduce that
there is some j such that Y = Xj . Furthermore, for some value of ej , if d has
value v, the condition fj(d, ej) holds and gj(d, ej) has value w. Therefore, (X, v)
depends on (Y,w) in one of two ways:

– In case the equation for X is conjunctive, Y (w) necessarily has to hold in
order for X(v) to hold. This is not reflected by G′. Therefore G′ is not a
positive dependency graph, contrary to our assumption.

– In case the equation for X is disjunctive, Y (w) necessarily has to be false in
order for X(v) to be false. This is not reflected by G′. Therefore G′ is not a
negative dependency graph, again contrary to our assumption.

We conclude that G′ is either not a positive or not a negative dependency graph,
which contradicts our initial assumption. ut

5 Reduced Dependency Space

In the literature, different approaches to solving PBESs have been proposed.
Many of those rely on instantiation of the PBES to a finite Boolean equation
system. The BES can then be solved with Gaussian elimination or with a parity
game solver. However, for PBESs with an underlying infinite BES, instantiation
is not possible. Several symbolic approaches have been proposed to reason about
the solution of such a PBES. Most notably, Koolen et al. [18] use SMT solvers to
find proof graphs and Nagae et al. [22,21] compute reduced proof graphs that
finitely represent an infinite proof graph. We extend that latter work to arbitrary
PBESs and show how a reduced proof graph can be computed efficiently.

Definition 8. Let G = (V,E) be a dependency graph for a PBES E. Then
G′ = (V ′, E′) is a reduced dependency graph, iff:

– V ′ ⊆ 2V is a finite partition of V , i.e.
⋃
V ′ = V and for all distinct b, b′ ∈ V ′

we have b ∩ b′ 6= ∅,
– E′ = {(b, b′) ∈ V ′ × V ′ | ∃s ∈ b, t ∈ b′. sE t}.

We say G is the base graph of G′.

The intuition behind reduced dependency graphs is that nodes that are in some
way equivalent, are grouped. In this way, some infinite dependency graphs can be
represented finitely. As equivalence relation on nodes we use bisimulation [24].
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Definition 9. Let G = (V,E) be a dependency graph for E. A relation R ⊆ V ×V
is a bisimulation relation iff for all (X, v)R(Y,w):

– rankE(X) = rankE(Y ) and opE(X) = opE(Y ).
– If (X, v)E(X ′, v′), then there is a (Y ′, w′) such that (Y,w)E(Y ′, w′) and

(X ′, v′)R(Y ′, w′).
– If (Y,w)E(Y ′, w′), then there is a (X ′, v′) such that (X, v)E(X ′, v′) and

(X ′, v′)R(Y ′, w′).

We say that nodes (X, v) and (Y,w) are bisimilar, denoted (X, v) - (Y,w), iff
they are related by some bisimulation relation. We say two graphs G and H are
bisimilar iff for every node in G there is a bisimilar node in H and vice versa.

Since bisimilarity is an equivalence relation it induces a partition of the
node set V into equivalence classes. We call the reduced dependency graph
Gr = (V/-, Er), that has G as its base graph (cf. Definition 8), the bisimulation
quotient of G, notation G/-.

Partition refinement

To compute the bisimulation quotient, we rely on partition refinement. In this
algorithm, a partition of the state space is iteratively refined until it becomes
stable (a formal definition follows). The coarsest stable partition coincides with
the equivalence classes under bisimulation.

In the context of partition refinement, a block is a set of nodes. A partition P
of a set of nodes V is a set of blocks that are pairwise disjoint. Furthermore, the
union over all blocks in P is equal to V . We say a partition P is finer than a
partition P ′ iff all blocks of P are contained in some block of P ′.

Algorithm 1 shows how to perform partition refinement on a dependency
graph G = (V,E) that underlies the PBES E . The initial partition P0 is set to
{{(X, v) ∈ V | v ∈ D∧ rankE(X) = rankE(Y )∧ opE(X) = opE(Y )} | Y ∈ bnd(E)}.
In every iteration, we find two blocks b, b′ ∈ P and split b with respect to b′ in
the following way:

split(b, b′) = {s ∈ b | ∃t ∈ b′. sE t}
co-split(b, b′) = b \ split(b, b′)

Algorithm 1: Partition refinement for PBESs

Input: PBES E , initial partition P0

1 i← 0;
2 while Pi is not stable do
3 Pi+1 ← (Pi \ {b}) ∪ {split(b, b′), co-split(b, b′)} for some b, b′ ∈ Pi such

that split(b,′ b) and co-split(b, b′) are non-empty;
4 i← i + 1;

5 return Pi;
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Then we update the partition to reflect this split (line 3). Note that each partition
Pi+1 is finer than partition Pi.

If a block b cannot be split with respect to a block b′, we say b is stable with
respect to b′. Block b is stable with respect to a set of blocks K if it is stable
with respect to all the blocks in K. A partition P is stable (with respect to itself)
iff all of the blocks in P are stable with respect to P . The partition refinement
algorithm terminates when P is stable (line 2).

Since our goal is to enable reasoning about infinite dependency graphs, we can-
not store blocks explicitly. Instead, we represent each block with a characteristic
function.

Definition 10. Let E be a PBES and b be a set of nodes in a dependency graph
of E. The corresponding characteristic function kb : sig(E)→ B is defined as:

kb(X, v) =

{
true if (X, v) ∈ b
false otherwise

With this representation, we can also provide a symbolic implementation of
the split and co-split functions. In the following definitions, k and k′ are Boolean
expressions representing characteristic functions.

split(k, k′) = λXi∈X ,d:D. k(Xi, d) ∧
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

co-split(k, k′) = λXi∈X ,d:D. k(Xi, d) ∧ ¬
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

Example 4. We revisit the bakery protocol example from Section 3. Running
Algorithm 1 on that PBES yields a finite reduced dependency space (depicted in
Figure 5) which contains 14 reachable equivalence classes. Here, we abbreviated
state names. For example, in state wi, process 0 is waiting and process 1 is
idle. Furthermore, in state ww0, both processes are waiting, but process 0 has
preference to enter the critical section first. States belonging to predicate variable
Y are prefixed with Y-. We omitted the state containing Xtrue for simplicity (cf.
proof of Proposition 1). Note the symmetry between process 0 and process 1 in
those states belonging to variable X and also the parallels between X and Y . ut

ii

iw

ic

wi

ci

cw

wc

ww0ww1Y-ww1

Y-wc Y-wi

Y-ww0

Fig. 5: Equivalence classes and transitions in the reduced dependency space of
the bakery protocol example.
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Algorithm 1 can be used to solve a PBES as follows. Upon its termination1

a Boolean equation system or a parity game can be generated from the stable
partition; either of them then finitely represents the dependency graph of the
original PBES. For both possible types of outputs, there are existing solvers that
can compute their solution. From these solutions we can then derive the solution
to the original PBES. We next formalise these steps.

Since we are reasoning in the context of partition refinement, we know that all
partitions that are finer than P0 are (by definition of P0 given above) such that
all nodes in a block have the same rank and operand. We call a partition with
this property consistent. We say that a reduced dependency graph is consistent
iff its set of vertices is a consistent partition. The following definition shows how
to construct a BES (in CRF) for a consistent reduced dependency graph.

Definition 11. Let G = (V,E) be a consistent reduced dependency graph of
a PBES E. The induced Boolean equation system, denoted EG, is the BES
containing, per block b ∈ V , exactly one equation (σbXb(d:D?) = φb) such that:

– rankEG(Xb) = rankE(X) for all (X, v) ∈ b,
– If opE(X) = ∧ for all (X, v) ∈ b then φb =

∧
(b,b′)∈E(true ⇒ Xb′(?)),

– If opE(X) = ∨ for all (X, v) ∈ b then φb =
∨

(b,b′)∈E(true ∧Xb′(?)).

Before we state several interesting properties of an induced BES, we introduce
one additional notion. Given two (reduced) dependency graphs G and G′ and
their associated PBESs E and E ′, we say G and G′ are rank-operand-isomorph
when there is an isomorphism between them that preserves the rank and operand,
which follow from E and E ′ respectively.

The following lemma formalises that the BES induced by a consistent reduced
dependency graph is a correct representation of the reduced dependency graph.

Lemma 2. Let G be a consistent reduced dependency graph of a PBES E and EG
be the induced BES. Then, the dependency space of EG is rank-operand-isomorph
to G.

The following theorem states that the solution to the BES that is induced by
the bisimulation quotient of the dependency space of a PBES E , preserves and
reflects the solution to that PBES.

Theorem 3. Let E be a PBES, G = (V,E) be the dependency space of E and E ′
the BES induced by G/-. Then, v ∈ JEK(X) iff JE ′K(Xb) = {?}, where (X, v) ∈ b.
Proof. The proof is based on Theorem 1, Lemma 2, the reasoning that bisim-
ulation reduction preserves bisimilarity and that bisimilarity is a consistent
correlation [26], i.e., bisimilarity preserves and reflects the solution of a PBES.

ut
We remark that the algorithm presented in this section generalises the algorithms
presented by Nagae et al. in [22] and [21], which only apply to PBESs consisting
of predicate formulae that contain no predicate variables within the scope of
universal quantifiers.

1 We remark that termination is not guaranteed as not every infinite dependency graph
has a finite bisimulation quotient.
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6 Computing Local Solutions

The approach presented in the previous section terminates when the bisimulation
quotient is finite and all the operations on data are decidable. However, we are
also interested in cases where the bisimulation quotient is not finite. Therefore,
we propose an improvement that allows for reasoning about the solution of a
single node (X, v), even when some part of the dependency space is not finitely
representable. This is illustrated by the following example.

Example 5. Consider the following PBES:

νX(n:N) = X(n+ 1) ∨ (n = 0 ∧ Y (0))

µY (n:N) = Y (n+ 1) ∧ (n = 0⇒ X(0)) ∧ (n > 1⇒ Y (n− 1))

The (stable) bisimulation quotient of the dependency space of this PBES is
infinite and looks as follows:

{(X, 0)} {(X,n) | n ≥ 1}

{(Y, 0)} {(Y, 1)} {(Y, 2)} · · ·
While this reduced dependency graph is infinite, there is a finite reduced proof

graph for X(0), namely the subgraph that only contains the blocks {(X, 0)} and
{(X,n) | n ≥ 1}. Therefore, to draw conclusions about the solution for X(0), it
is not necessary to refine the part of the partition that concerns Y . ut

The example suggests we may in general search for a proof graph in a—not
yet stable—reduced dependency graph and use that to partially solve a PBES.
However, not every proof graph obtained that way necessarily induces a proper
proof graph for the original PBES: stability of the subgraph representing the
proof graph is required. The following lemma and theorem formalise this.

Lemma 3. Let G = (V,E) be a dependency graph and Gr = (Vr, Er) a consistent
reduced dependency graph of G. Furthermore, let G′r = (V ′r , E

′
r) be a reduced

dependency graph that is a subgraph of Gr and G′ = (V ′, E′) its base graph. If
V ′r ⊆ Vr is stable with respect to itself then G′r is bisimilar to G′.

Proof. By proving that R = {((X, v), b) | (X, v) ∈ b} is a bisimulation relation,
we show that G′r is bisimilar to G′. ut

Theorem 4. Let G = (V,E) be a dependency graph for a PBES E and Gr =
(Vr, Er) a consistent reduced dependency graph of G. Furthermore, let G′r =
(V ′r , E

′
r) be a reduced dependency graph that is a subgraph of Gr and G′ = (V ′, E′)

its base graph. If V ′r ⊆ Vr is stable with respect to itself and rank-operand-isomorph
with a proof graph of the BES induced by Gr, then G′ is a proof graph for E.

Proof. The proof proceeds by showing that G′ satisfies the conditions of a
dependency graph and of a proof graph, by applying Lemma 3. ut
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The following example illustrates that the assumptions from Theorem 4 are
necessary conditions.

Example 6. Consider the PBES (νX(n:N) = ((n 6= 0) ∧X(n)) ∨ Y )(µY = Y ).
The figures below depict the initial partition of the dependency space of this
PBES (on the left-hand side) and the stable partition (on the right-hand side).

{(X,n) | n ∈ N} {Y }
{(X,n) | n 6= 0}

{Y }

{(X, 0))}

In the initial partition, there is a positive reduced proof graph that contains
(X, 0), viz. the graph containing only {(X,n) | n ∈ N}. Note that this block is
not stable with respect to itself. In contrast, in the stable partition, there is only
a negative proof graph for (X, 0). This shows that a reduced proof graph that is
not stable with respect to itself can in general not be used to draw conclusions
about the solution of the PBES under consideration. ut

Based on this theorem, we propose the following changes to our approach:
after every iteration, we search for a proof graph in the current partition. In
the next iteration, only the blocks that are contained in the proof graph will be
refined. When the blocks in the proof graph are stable with respect to each other,
we are finished (by Theorem 4). See Algorithm 2. We maintain two sets of blocks:
P contains the blocks in the proof graph that we are currently considering and
U contains the other blocks. At line 4, we split a block in P and temporarily
store the resulting partition in Q. Then, the set of blocks of the whole partition,
reachable from the block containing the initial node (X, v) is computed (lines
5 and 6). Thereby, blocks that are not reachable from the initial node are
effectively “thrown away”, i.e., they are not considered during next iterations.
Since unreachable blocks cannot be part of a minimal proof graph for the initial
node, this does not affect the correctness of the algorithm. From the reachable
blocks, we extract a proof graph for the initial node (X, v) (line 7). Searching for
a proof graph can be done with existing techniques, such as a solver for Boolean
equations systems or for parity games. The blocks contained in the proof graph

Algorithm 2: Computing local partitions

Input: PBES E , initial partition P0, initial node (X, v)
1 U0 ← ∅;
2 i← 0;
3 while Pi is not stable do
4 Q← (Pi \ {k}) ∪ {split(k, k′), co-split(k, k′)} for some k, k′ ∈ Pi such

that split(k, k′) and co-split(k, k′) are non-empty;
5 Q← Q ∪ Ui;
6 Q← computeReachableBlocks(Q, (X, v));
7 (Pi+1, Ui+1)← findProofGraph(Q, (X, v));
8 i← i + 1;

9 return Pi;
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are again stored in P , the remaining blocks are stored in U . After every iteration,
we check whether P is stable (line 3). If so, the algorithm terminates.

7 Implementation and Experiments

We implemented Algorithms 1 and 2 in a tool called pbessymbolicbisim that
is part of the mCRL2 toolset [6]. The implementation calls the Z3 SMT-solver
to determine whether one of the sets split(k, k′) or co-split(k, k′) is empty, i.e.,
whether its characteristic function is unsatisfiable. Further simplification of the
characteristic functions is handled by the mCRL2 term rewrite system. Choosing
which block to split each iteration (line 3 of Algorithm 1 and line 4 of Algorithm 2)
is done in such a way that an unreachable block is never split, in similar vein
to [20].

We compare the performance of three approaches: our implementation of
Algorithms 1 and 2 and the pbes-cvc4 tool from [18]. We originally also aimed to
compare with the tool PBESSolver from [21]. However, their implementation has
several practical limitations, making a fair comparison impossible. We therefore
decided to exclude PBESSolver from our experiments. The experiments were
performed on a machine with an Intel Core i5 3350P processor and 8GB of
memory running Ubuntu 16.04 and mCRL2 commit 9068139379.

Our set of benchmarks consists of various PBESs that encode different types
of decision problems, covering typical linear-time, branching-time and real-time
model checking problems, a scheduling problem, recursive functions and be-
havioural equivalence checking problems. The PBESs encoding model checking
problems mostly originate from the set of examples included in mCRL2, which
in some cases have been modified to generate infinite state spaces. Classical
approaches that generate the state-space explicitly fail for all of these models.
We remark that most of the models contain multiple concurrent processes. Each
model is combined with one or more formal properties in the form of a modal
mu-calculus formula to obtain a PBES. More specifically, we verified the following
properties:

– two reachability properties (the real-time ball game: winning impossible; and
the real-time train gate system: action go(1) can be executed at time 20);

– two invariants (Fischer’s real-time mutual exclusion protocol and Lamport’s
bakery protocol: no deadlock);

– six linear and branching-time properties (the ball game: infinitely often put
ball; the train gate: fairness; Fischer’s protocol and Lamport’s bakery protocol:
request must be served; the Concurrent Alternating Bit Protocol (CABP): a
message can be received infinitely often; Hesselink’s handshake register [13]:
cache consistency, and all writes finish).

The scheduling problem we consider is due to [22]; it encodes a fair trading
problem encoded as a PBES. Furthermore, two recursive functions we consider
are based on classical benchmarks for verification tools [17]. A modified version
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Table 1: Runtime comparison between pbessymbolicbisim and pbes-cvc4. All
runtimes are in seconds. ‘t.o.’ indicates a time-out, ‘o.o.m’ indicates an out-of-
memory error and a cross indicates that a PBES cannot be handled.

Alg. 1 Alg. 2 pbes-cvc4

PBES initial node/property solution |V | time |V | time time

ball game winning impossible false 12 0.55 12/12 0.65 0.27
infinitely often put ball true 3 0.006 1/3 0.006 t.o.

train gate go(1) at time 20 true 29 11.51 6/28 5.15 0.39
fairness false 19 21.95 5/32 4.79 7

Fischer (N=3) no deadlock true 65 74.77 64/65 61.41 7

Fischer (N=4) request must serve false o.o.m. 5/38 20.87 7

bakery no deadlock true 23 3.08 23/23 2.26 t.o.
request must serve false 123 85.02 14/111 14.52 0.44

Hesselink cache consistency false o.o.m. 21/1807 387.54 7

all writes finish false t.o. 13/724 117.47 7

CABP receive infinitely often true 260 267.95 25/702 61.02 7

trading Xa(1, 1) true 7 0.02 5/7 0.02 t.o.
McCarthy M(0, 10) true 1633 1299.17 14/405 59.46 7

M(0, 9) false 1633 1364.33 128/178 8.57 7

Takeuchi T (3, 2, 1, 3) true t.o. 9/187 35.64 7

T (3, 2, 1, 2) false t.o. 77/198 39.42 7

ABP+buffer branching bisimilar true 132 4.89 131/132 4.86 7

of the McCarthy 91 function, as per [21], is represented with the following PBES:

µM(x, y:N) = (x > 10 ∧ x = y + 1) ∨ ∃e:N. x ≤ 10 ∧M(x+ 2, e) ∧M(e, y)

Here, M(x, y) is true if and only if (x, y) is a solution for the function we represent.
In a similar fashion, we have a PBES for Takeuchi’s function [17]:

µT (x,y, z, w:N) = (x ≤ y ∧ y = w) ∨ (∃t1, t2, t3:N. x > y∧
T (x− 1, y, z, t1) ∧ T (y − 1, z, x, t2) ∧ T (z − 1, x, y, t3) ∧ T (t1, t2, t3, w))

Finally, we consider the decision problem whether Alternating Bit Protocol
(ABP) is branching bisimilar to a one-place buffer, both with infinite data. This
PBES is encoded using the techniques in [4], as implemented in the mCRL2 tool
lpsbisim2pbes.

The results are listed in Table 1. For each PBES, we report the solution
for the initial node and the runtime in seconds for each approach. In addition,
for Algorithm 1, we report the number of blocks in the reachable part of the
bisimulation quotient as |V |. For Algorithm 2, we list the size of the reduced proof
graph and the total number of blocks in memory at the moment the algorithm
terminates. A timeout is represented with ‘t.o.’, and an out-of-memory error with
‘o.o.m.’. Furthermore, we write a cross for the PBESs that cannot be handled.

We observe that Algorithm 2 performs better than Algorithm 1 for nearly
every PBES in our set of benchmarks. Algorithm 1 also runs into several out-of-
memory errors, while Algorithm 2 manages to find a proof graph for every PBES.
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The runtime of pbes-cvc4 is very small for the four cases it can solve. However,
it fails to provide a solution in most cases.

The three cases where a timeout occurs for pbes-cvc4 (trading, ball game
and bakery) are similar: the models contain one or more variables that strictly
increase. Since pbes-cvc4 can only find lasso-shaped proof graphs, it does not
terminate for PBESs with infinite proof graphs that are not lasso-shaped.

For Fischer and bakery with the no deadlock property and the equivalence
problem on ABP and buffer, the reduced proof graph covers almost the entire
reduced dependency space. Only the block containing Xfalse (cf. proof of Propo-
sition 1) is not present in the proof graph. In those cases, Algorithm 2 does not
perform better than Algorithm 1.

8 Related Work

The first works on generating minimal representations from behavioural spec-
ifications were written by Bouajjani et al. [3]. Later, these ideas were applied
to timed automata [1,25]. Similar to our approach, they rely on bisimulation to
compute the minimal quotient directly from a specification. Fisler and Vardi [9]
extended this work to include early termination when performing reachability
analysis. Our work is similar in spirit to these methods, but it generalises these
by allowing to verify properties expressed in the full modal mu-calculus and by
supporting infinite-state systems, not limited to real-time systems.

The techniques and theory we present also generalise several other closely re-
lated works, such as [22,21,18,16]. Nagae et al. [22] transfer the ideas of Bouajjani
et al. to disjunctive, quantifier-free PBESs and generate finite parity games that
can be solved. They later expanded the work to existential PBESs [21]. These
fragments of the PBES logic limit the type of properties one can verify. A small
set of experimental results shows that their approach is feasible in practice for
small academic examples.

Koolen et al. [18] use an SMT solver to search for linear proof graphs in
disjunctive or conjunctive PBESs. Their technique manages to find solutions for
model checking problems where traditional tools time out. Even if enumeration of
the state-space is possible, an instantiation-based approach is not always faster.
We remark that the number of unrollings performed by their tool gives a rough
indication of the optimal size of the proof graph constructed with our techniques
when applied to disjunctive or conjunctive PBESs.

In [16], Keiren et al. define two equivalence relations based on bisimulation
for BESs. These relations are then used to minimise BESs that represent model
checking problems. Experiments show that applying minimisation speeds up
the solving procedure, i.e., the time required for minimising and then solving
the minimal BES is lower than the time required to solve the original BES.
Whereas [16] applies explicit-state techniques by working directly on a BES, our
work is based on a symbolic representation. The disadvantages of the explicit
approach of [16] is that it requires one to instantiate a PBES to BES first.
Therefore, it is not suitable for infinite-state systems.
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Fontana et al. [10] construct symbolic proof trees to check alternation-free
mu-calculus formulae on timed automata. To recursively prove (sub)formulas,
they unfold the transition relation according to a set of proof rules they propose.
This approach allows a larger class of properties than UPPAAL [2], which only
supports a subset of TCTL. Contrary to our approach, the proof they produce is
not necessarily minimal with respect to bisimulation.

Although our work was not inspired by counterexample-guided abstraction re-
finement (CEGAR) [5], we see many similarities. In this approach, an abstraction
of the model under consideration is continuously refined based on spurious traces
that are found by a model checker. Our second algorithm essentially refines with
respect to ‘spurious proof graphs’. Compared to our approach, CEGAR typically
supports a less expressive class of properties, such as ACTL or LTL.

9 Conclusion

We presented an approach to solving arbitrarily-structured PBESs with infinite
data, which enables solving of a larger set of PBESs than possible with existing
tools. This improves the state-of-the-art for model checking and equivalence
checking on (concurrent) systems with infinite data. A possible direction for
future work is to weaken the equivalence relation on dependency graph nodes.
Here, one can draw inspiration from equivalence relations defined on parity games,
for instance as defined in [7]. We also want to investigate heuristics for the choice
of blocks that are used for splitting in every iteration. The heuristics can for
example be based on information obtained from static analysis of the PBES. We
believe the choice of blocks during splitting can have a significant influence on
the runtime.
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Appendix

Derivation of transition condition in the proof of Lemma 1

Lemma 1. The dependency space G = (sig(E), E) of E is both a positive and a
negative dependency graph.

Recall that we are considering a node (Xi, v) in a graph G, and we want
to prove the G is a positive dependency graph, i.e., r from Definition 4 is true.
Furthermore, we assumed the equation for Xi is conjunctive. We derive that
JϕXi

Kηδ[v/d] = r, where η = env((Xi, v)•, true).

JϕXi
Kηδ[v/d] = J

∧
j∈Ji

∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej))Kηδ[v/d]

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kηδ[vj/ej , v/d]⇒ JXj(gj(d, ej))Kηδ[vj/ej , v/d]

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ[vj/ej , v/d]⇒ Jgj(d, ej)Kδ[vj/ej , v/d] ∈ η(Xj)

(†)
=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ[vj/ej , v/d]⇒ Jgj(d, ej)Kδ[vj/ej , v/d] ∈

{Jgj(d, ej)Kδ′[v′j/ej , v/d] | δ′∈∆, v′j∈Ej . Jfj(d, ej)Kδ′[v′j/ej , v/d]}

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ[vj/ej , v/d]⇒

∃v′j∈Ej , δ
′∈∆. v′j = v ∧ δ′ = δ ∧ Jfj(d, ej)Kδ′[v′j/ej , v/d]

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ[vj/ej , v/d]⇒ Jfj(d, ej)Kδ[vj/ej , v/d]

=
∧
j∈Ji

∀vj ∈ Ej . true

= r

ut

Proof for Lemma 2

Lemma 2. Let G be a consistent reduced dependency graph of a PBES E and EG
be the induced BES. Then, the dependency space of EG is rank-operand-isomorph
to G.

Proof. Let G = (V,E) be a consistent reduced dependency graph of a PBES E
and EG be the induced BES. Furthermore, let G′ = (V ′, E′) be the dependency
space of EG. Let R : V → V ′ be defined as R(b) = (Xb, ?) for all b ∈ V . We will
show that R is an isomorphism. Clearly, R is injective, since R(b) = R(b′) ⇒
(Xb, ?) = (Xb′ , ?) ⇒ b = b′. Surjectivity of R follows from the definition of V ′,
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which is V ′ = sig(EG) = {Xb | b ∈ V } ×D? (Definition 11). So for every element
(Xb, ?) ∈ V ′ we have R(b) = (Xb, ?). We conclude that R is bijective.

Let b ∈ V be some block. The equation for Xb has the same rank and
operand as b (Definition 11) and thus (Xb, ?) also has the same rank and operand.
Therefore, R preserves the rank and operand.

What remains is to show that R preserves the edge relation, i.e., for all nodes
b, b′ ∈ V , bE b′ if and only if R(b)E′R(b′).

⇐ Let b, b′ ∈ V be two blocks satisfying R(b)E′R(b′), i.e., (Xb, ?)E
′(Xb′ , ?).

According to Definition 7, this implies that there is a j ∈ Jb such that
Xj = Xb′ (the other conditions of Definitions 7 are trivially true in the
context of EG). From the definition of the equations of EG (Definition 11),
we deduce that this can only be the case if bE b′.

⇒ Let b, b′ ∈ V be two blocks satisfying bE b′. Then, the equation for Xb in
EG contains a clause that has Xb′(?) as predicate variable (Definition 11).
From Definition 7, it follows that (Xb, ?)E

′(Xb′ , ?) and thus we conclude that
R(b)E′R(b′).

ut

Proofs for Section 6

Lemma 3. Let G = (V,E) be a dependency graph and Gr = (Vr, Er) a consistent
reduced dependency graph of G. Furthermore, let G′r = (V ′r , E

′
r) be a reduced

dependency graph that is a subgraph of Gr and G′ = (V ′, E′) its base graph. If
V ′r ⊆ Vr is stable with respect to itself then G′r is bisimilar to G′.

Proof. The situation from Lemma 3 is depicted in the figure below.

G = (V,E) Gr = (Vr, Er)

⊆ ⊆

G′ = (V ′, E′) G′r = (V ′r , E
′
r)

base graph of

base graph of

For bisimilarity of G′r and G′ we reason as follows. First, note that V ′ =
⋃
V ′r

(see Definition 8). Let R ⊆ V ′ × V ′r be a relation defined as R = {((X, v), b) |
(X, v) ∈ b}. We will show that R is a bisimulation relation.

Pick (X, v)Rb. By definition, we have (X, v) ∈ b. Note that G′r is consistent
due to consistency of Gr; and we find that both the rank and operand of the
equation for X match the rank and operand of the equation for Xb in the BES
induced by G′r. For the transfer conditions we observe the following:

– From the definition of a reduced graph it follows directly that if (X, v)E′(Y,w),
then bE′r b

′, where (Y,w) ∈ b′, i.e., (Y,w)Rb′.
– Suppose we have bE′r b

′. Since V ′r is stable, in particular b ∈ V ′r is stable with
respect to b′ ∈ V ′r . Since all nodes in a stable block have the same transitions,
bE′r b

′ implies that there must be a node (Y,w) ∈ b′ such that (X, v)E′(Y,w).
Moreover, (Y,w) ∈ b′ implies the required (Y,w)Rb′.
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It follows that G′ is bisimilar to G′r. ut

Theorem 4. Let G = (V,E) be a dependency graph for a PBES E and Gr =
(Vr, Er) a consistent reduced dependency graph of G. Furthermore, let G′r =
(V ′r , E

′
r) be a reduced dependency graph that is a subgraph of Gr and G′ = (V ′, E′)

its base graph. If V ′r ⊆ Vr is stable with respect to itself and rank-operand-isomorph
with a proof graph of the BES induced by Gr, then G′ is a proof graph for E.

Proof. The situation is depicted in the figure below. Here, H is the dependency
space of E ′, the BES induced by Gr, and H ′ is a proof graph for E ′.

G = (V,E) Gr = (Vr, Er)

⊆ ⊆ ⊆

G′ = (V ′, E′) G′r = (V ′r , E
′
r)

H = (VH , EH)

H ′ = (V ′H , E
′
H)

E ′

base graph of

base graph of

ind. BES dep. space

pr. graph

ro-isomorph

ro-isomorph

We observe that G′ trivially satisfies the conditions of a proof graph, since it
has exactly the same infinite paths as H ′. In the following, we reason that G′

also satisfies the conditions of a dependency graph.
We assume that G′ is not a dependency graph. Then there must be a ‘missing’

edge that violates the conditions of a dependency graph. Let ((X, v), (Y,w)) 6∈ E′
be such an edge, i.e., (X, v) ∈ V ′ and JφXKη′(δ[v/dX ]) 6= r = JφXKη(δ[v/dX ]) for
some r ∈ B, where η′ = env((X, v)•, r) and η = env((X, v)• ∪ {(Y,w)}, r). From
bisimilarity with G′r (see Lemma 3), it follows that (b, b′) 6∈ E′r, where (X, v) ∈ b
and (Y,w) ∈ b′. Furthermore, the corresponding edge is also missing from H ′.

Since the presence of the edge ((X, v), (Y,w)) is necessary to satisfy the
condition on dependency graphs, it must be present in G. As per the definition of
a reduced graph, it is also present in Gr, i.e., (b, b′) ∈ Er, where (X, v) ∈ b and
(Y,w) ∈ b′. Thus, the corresponding edge is also present in H: ((Xb, ?), (Xb′ , ?)) ∈
EH .

We now analyse whether H ′ is indeed a valid proof graph for E ′. There are
two possible cases:

– opE(X) = ∧ and r = true or opE(X) = ∨ and r = false. In this case,
any proof graph that contains the node (Xb, ?) must also contain the edge
((Xb, ?), (Xb′ , ?)). This contradicts the earlier claim that this edge is missing
from H ′.

– opE(X) = ∧ and r = false or opE(X) = ∨ and r = true. If Xb′ is the only
predicate variable in the right-hand side of Xb, then it is indeed necessary to
include ((Xb, ?), (Xb′ , ?)) in E′H whenever V ′H contains (Xb, ?). The earlier
claim that this edge is missing is again contradicted.
If there are more predicate variables in the right-hand side of Xb, then there
are also multiple successors of (X, v) in G. This can be derived from the
stability of b with respect to b′. Therefore, the edge ((X, v), (Y,w)) was not
required to be in E, which contradicts our initial assumption.

We derive that G′ satisfies the conditions of a dependency graph. ut
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